1,641 research outputs found

    Differential rotation decay in the radiative envelopes of CP stars

    Full text link
    Stars of spectral classes A and late B are almost entirely radiative. CP stars are a slowly rotating subgroup of these stars. It is possible that they possessed long-lived accretion disks in their T Tauri phase. Magnetic coupling of disk and star leads to rotational braking at the surface of the star. Microscopic viscosities are extremely small and will not be able to reduce the rotation rate of the core of the star. We investigate the question whether magneto-rotational instability can provide turbulent angular momentum transport. We illuminate the question whether or not differential rotation is present in CP stars. Numerical MHD simulations of thick stellar shells are performed. An initial differential rotation law is subject to the influence of a magnetic field. The configuration gives indeed rise to magneto-rotational instability. The emerging flows and magnetic fields transport efficiently angular momentum outwards. Weak dependence on the magnetic Prandtl number (~0.01 in stars) is found from the simulations. Since the estimated time-scale of decay of differential rotation is 10^7-10^8 yr and comparable to the life-time of A stars, we find the braking of the core to be an ongoing process in many CP stars. The evolution of the surface rotation of CP stars with age will be an observational challenge and of much value for verifying the simulations.Comment: 8 pages, 11 figures; submitted to Astron. & Astrophy

    3D simulations of rising magnetic flux tubes in a compressible rotating interior: The effect of magnetic tension

    Full text link
    Context: Long-term variability in solar cycles represents a challenging constraint for theoretical models. Mean-field Babcock-Leighton dynamos that consider non-instantaneous rising flux tubes have been shown to exhibit long-term variability in their magnetic cycle. However a relation that parameterizes the rise-time of non-axisymmetric magnetic flux tubes in terms of stellar parameters is still missing. Aims: We aim to find a general parameterization of the rise-time of magnetic flux tubes for solar-like stars. Methods: By considering the influence of magnetic tension on the rise of non-axisymmetric flux tubes, we predict the existence of a control parameter referred as Γα1α2\Gamma_{\alpha_1}^{\alpha_2}. This parameter is a measure of the balance between rotational effects and magnetic effects (buoyancy and tension) acting on the magnetic flux tube. We carry out two series of numerical experiments (one for axisymmetric rise and one for non-axisymmetric rise) and demonstrate that Γα1α2\Gamma_{\alpha_1}^{\alpha_2} indeed controls the rise-time of magnetic flux tubes. Results: We find that the rise-time follows a power law of Γα1α2\Gamma_{\alpha_1}^{\alpha_2} with an exponent that depends on the azimuthal wavenumber of the magnetic flux loop. Conclusions: Compressibility does not impact the rise of magnetic flux tubes, while non-axisymmetry does. In the case of non-axisymmetric rise, the tension force modifies the force balance acting on the magnetic flux tube. We identified the three independent parameters required to predict the rise-time of magnetic flux tubes, that is, the stellar rotation rate, the magnetic flux density of the flux tube, and its azimuthal wavenumber. We combined these into one single relation that is valid for any solar-like star. We suggest using this generalized relation to constrain the rise-time of magnetic flux tubes in Babcock-Leighton dynamo models.Comment: 18 pages, 15 figures, 6 tabula

    Inconsistency of the Wolf sunspot number series around 1848

    Full text link
    Aims. Sunspot number is a benchmark series in many studies, but may still contain inhomogeneities and inconsistencies. In particular, an essential discrepancy exists between the two main sunspot number series, Wolf (WSN) and group (GSN) sunspot numbers, before 1848. The source of this discrepancy has so far remained unresolved. However, the recently digitized series of solar observations in 1825-1867 by Samuel Heinrich Schwabe, who was the primary observer of the WSN before 1848, makes such an assessment possible. Methods. We construct sunspot series, similar to WSN and GSN, but using only Schwabe's data. These series, called WSN-S and GSN-S, respectively, were compared with the original WSN and GSN series for the period 1835-1867 to look for possible inhomogeneities. Results. We show that: (1) The GSN series is homogeneous and consistent with the Schwabe data throughout the entire studied period; (2) The WSN series decreases by roughly ~20% around 1848 caused by the change of the primary observer from Schwabe to Wolf and an inappropriate individual correction factor used for Schwabe in the WSN; (3) This implies a major inhomogeneity in the WSN, which needs to be corrected by reducing its values by 20% before 1848; (4) The corrected WSN series is in good agreement with the GSN series. This study supports the earlier conclusions that the GSN series is more consistent and homogeneous in the earlier part than the WSN series.Comment: Published as: Leussu, R., I.G. Usoskin, R. Arlt and K. Mursula, Inconsistency of the Wolf sunspot number series around 1848, Astron. Astrophys., 559, A28, 201

    Importance of second-order piezoelectric effects in zincblende semiconductors

    Full text link
    We show that the piezoelectric effect that describes the emergence of an electric field in response to a crystal deformation in III-V semiconductors such as GaAs and InAs has strong contributions from second-order effects that have been neglected so far. We calculate the second-order piezoelectric tensors using density functional theory and obtain the piezoelectric field for [111]-oriented Inx_xGa1x_{1-x}As quantum wells of realistic dimensions and concentration xx. We find that the linear and the quadratic piezoelectric coefficients have the opposite effect on the field, and for large strains the quadratic terms even dominate. Thus, the piezoelectric field turns out to be a rare example of a physical quantity for which the first- and second-order contributions are of comparable magnitude.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let

    Amplification and stability of magnetic fields and dynamo effect in young A stars

    Full text link
    This study is concerned with the early evolution of magnetic fields and differential rotation of intermediate-mass stars which may evolve into Ap stars. We report on simulations of the interplay of differential rotation and magnetic fields, the stability limits and non-linear evolution of such configurations, and the prospects of dynamo action from the unstable cases. The axisymmetric problem delivers a balance between field amplification and back-reaction of the magnetic field on the differential rotation. The non-axisymmetric case involves also the Tayler instability of the amplified toroidal fields. We consider limits for field amplification and apply these to young A stars. Apart from its application to Ap stars, the instability is scrutinized for the fundamental possibility of a dynamo. We are not looking for a dynamo as an explanation for the Ap star phenomenon. The kinetic helicity is concentrated near the tangent cylinder of the inner sphere of the computational domain and is negative in the northern hemisphere. This appears to be a ubiquitous effect not special to the Tayler instability. The latter is actually connected with a positive current helicity in the bulk of the spherical shell giving rise to a small, but non-vanishing alpha-effect in non-linear evolution of the instability.Comment: 13 pages, 14 figures, accepted by Mon. Not. R. Astro

    Three-dimensional stability of the solar tachocline

    Full text link
    The three-dimensional, hydrodynamic stability of the solar tachocline is investigated based on a rotation profile as a function of both latitude and radius. By varying the amplitude of the latitudinal differential rotation, we find linear stability limits at various Reynolds numbers by numerical computations. We repeated the computations with different latitudinal and radial dependences of the angular velocity. The stability limits are all higher than those previously found from two-dimensional approximations and higher than the shear expected in the Sun. It is concluded that any part of the tachocline which is radiative is hydrodynamically stable against small perturbations.Comment: 6 pages, 8 figures, accepted by Astron. & Astrophy

    Hydrodynamic stability in accretion disks under the combined influence of shear and density stratification

    Get PDF
    The hydrodynamic stability of accretion disks is considered. The particular question is whether the combined action of a (stable) vertical density stratification and a (stable) radial differential rotation gives rise to a new instability for nonaxisymmetric modes of disturbances. The existence of such an instability is not suggested by the well-known Solberg-Hoiland criterion. It is also not suggested by a local analysis for disturbances in general stratifications of entropy and angular momentum which is presented in our Section 2 confirming the results of the Solberg-Hoiland criterion also for nonaxisymmetric modes within the frame of ideal hydrodynamics but only in the frame of a short-wave approximation for small m. As a necessary condition for stability we find that only conservative external forces are allowed to influence the stable disk. As magnetic forces are never conservative, linear disk instabilities should only exist in the magnetohydrodynamical regime which indeed contains the magnetorotational instability as a much-promising candidate. To overcome some of the used approximations in a numerical approach,the equations of the compressible adiabatic hydrodynamics are integrated imposing initial nonaxisymmetric velocity perturbations with m=1 to m=200. Only solutions with decaying kinetic energy are found. The system always settles in a vertical equilibrium stratification according to pressure balance with the gravitational potential of the central object. keywords: accretion disks -- hydrodynamic instabilities -- turbulenceComment: 6 pages, 4 figures, 1 table, Astronomy and Astrophysics (subm.

    The exceptional Herbig Ae star HD101412: The first detection of resolved magnetically split lines and the presence of chemical spots in a Herbig star

    Full text link
    We obtained high-resolution, high signal-to-noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period P_rot=13.86d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non-statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current-driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate-mass stars could be an alternative to a frozen-in fossil field.Comment: 7 pages, 6 figures, 1 table, to appear in Astronomische Nachrichte
    corecore